The Perfect Prompt Format Works with ChatGPT, Claude, Llama, or any LLM

The Perfect Prompt Format Works with ChatGPT, Claude, Llama, or any LLM

How to create perfect prompts for any AI model using the easy-to-remember PTCRE framework to enhance your AI interactions and productivity.

Jun 22, 2024
How to create perfect prompts for any AI model using the easy-to-remember PTCRE framework to enhance your AI interactions and productivity.
How to create perfect prompts for any AI model using the easy-to-remember PTCRE framework to enhance your AI interactions and productivity.
  • Use Case: Crafting precise prompts for AI to improve interview practice sessions.
  • Tool: Large Language Models (LLMs) like ChatGPT, Claude, Llama.
  • Time for Learning: 10-15 minutes to understand and implement the PTCRE framework.

Video preview

Summary

This content introduces the PTCRE framework for creating effective prompts for large language models (LLMs) like ChatGPT. The framework consists of Persona, Task, Context, Response, and Examples, with an additional bonus tip to ensure clear and logical outputs. By following these steps, users can significantly improve the quality and relevance of the AI's responses, particularly useful in scenarios like interview practice.

Bear’s take

The PTCRE framework - specifying the persona, task, context, response format, and providing examples, you can guide the AI to deliver more accurate and useful outputs. I’ll say use it when you need some accurate result. It could be also overwhelming to draft all the five parts when you just simply need a short answer 😂

What you’ll learn

You'll learn how to structure prompts to get the most out of any AI language model. The PTCRE framework breaks down into five essential components:
  1. Persona: Define the role or persona the AI should adopt (e.g., a hiring manager).
  1. Task: Clearly specify the task you want the AI to perform (e.g., conduct an interview for a social media marketer).
  1. Context: Provide necessary background information relevant to the task (e.g., job responsibilities).
  1. Response: Determine the format and tone of the AI's response (e.g., start with pleasantries and ask a question).
  1. Examples: Include example inputs and outputs to guide the AI, especially for complex tasks.
Additionally, you'll learn a bonus tip to enhance the AI's reasoning capabilities: asking it to think step by step. This technique encourages the AI to lay out its thought process, resulting in clearer and more logical responses.
By mastering these steps, you'll be able to create precise and effective prompts, ensuring that the AI's responses are tailored to your specific needs, whether for professional development, learning, or productivity tasks.

Key steps

  1. Persona: Define the AI's role (e.g., tough but fair hiring manager).
  1. Task: Specify the task clearly (e.g., interview for a social media marketer position).
  1. Context: Provide essential background information (e.g., job responsibilities and company details).
  1. Response: Set the desired response format and tone (e.g., friendly with initial pleasantries).
  1. Examples: Offer example questions or scenarios to guide the AI's responses.
  1. Bonus Tip: Add "Let's think step by step" to enhance reasoning.

Next step

  • Try creating your own prompt using the PTCRE framework.
  • Practice with different personas and tasks to see how the AI adapts.
  • Explore advanced techniques like self-reflection or Chain of Thought for more complex interactions.

如何使用易于记忆的PTCRE框架创建完美提示,以增强AI交互和生产力。
用例:为AI制作精确提示,以改进面试练习。 工具:大语言模型(LLM),如ChatGPT、Claude、Llama。 学习时间:10-15分钟,理解并实施PTCRE框架。
摘要
本文介绍了为大语言模型(LLM)如ChatGPT创建有效提示的PTCRE框架。该框架包括Persona(角色)、Task(任务)、Context(上下文)、Response(响应)和Examples(示例),并附加一个额外的提示以确保清晰和逻辑的输出。通过遵循这些步骤,用户可以显著提高AI响应的质量和相关性,特别适用于面试练习等场景。
Bear的观点 通过使用PTCRE框架——指定角色、任务、上下文、响应格式并提供示例,可以引导AI提供更准确和有用的输出。在需要精确结果时使用这个框架非常有效,但如果只是需要简短的回答,完整起草这五个部分可能会显得繁琐。
 
你将学到什么 你将学习如何构建提示,以最大限度地利用任何AI语言模型。PTCRE框架分解为五个基本组成部分: 角色(Persona):定义AI应扮演的角色(如招聘经理)。 任务(Task):明确指定你希望AI执行的任务(如面试一名社交媒体营销人员)。 上下文(Context):提供与任务相关的必要背景信息(如工作职责)。 响应(Response):确定AI响应的格式和语气(如从问候开始并提出问题)。 示例(Examples):包括示例输入和输出,以指导AI,尤其是在处理复杂任务时。
此外,你还将学到一个提升AI推理能力的额外提示:让AI一步一步地思考。这种技巧鼓励AI展示其思维过程,从而得到更清晰和合乎逻辑的响应。
通过掌握这些步骤,你将能够创建精确和有效的提示,确保AI的响应量身定制,满足你的特定需求,无论是专业发展、学习还是生产力任务。
 
关键步骤 角色:定义AI的角色(如严肃但公正的招聘经理)。 任务:明确指定任务(如面试社交媒体营销职位)。 上下文:提供必要的背景信息(如工作职责和公司详情)。 响应:设置所需的响应格式和语气(如友好地开始问候)。 示例:提供示例问题或场景,以指导AI的响应。 额外提示:添加“让我们一步一步地思考”以增强推理。
 
下一步 尝试使用PTCRE框架创建自己的提示。 通过不同的角色和任务进行练习,看看AI如何适应。 探索高级技巧,如自我反思或思维链,用于更复杂的交互。

Hi there 👋  I'm Bear - a Product Designer, Podcaster, and Author who loves design, tech, and productivity.
Check my learnings at Bearwith.AI, and subscribe to my newsletter for more awesome AI tips: newsletter.bearwith.AI 🐻 & 🤖